Multiple Kernel Learning for Emotion Recognition in the Wild

Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett

> Machine Perception Laboratory UCSD

EmotiW Challenge, ICMI, 2013

Task

• Emotion Recognition on the 'Acted Facial Expression in the Wild dataset'- **AFEW**.

• Video clips collected from Hollywood movies.

 Classification into 7 emotion categories: Anger, Disgust, Fear, Happiness, Neutral, Sadness and Surprise.

Challenges in AFEW

- Videos resemble emotions in real-world conditions.
- Others:
 - Pose Variations.
 - Occlusion.
 - Spontaneous nature of expressions.
 - Variations among subjects.
 - Small number of training samples given the complexity of the problem (~ 60 clips per emotion).

Our Approach

Multimodal classification system comprising of:

- 1. Face Extraction and Alignment.
 - Handle non-frontal faces.
- 2. Feature Extraction.
 - Visual and audio features.
- 3. Feature fusion using Multiple Kernel Learning.

Our Approach

Face Extraction and Alignment

- Combined state-of-the-art face detection method with state-of-the-art tracking method.
- Face Detection:
 - Deformable part-based model by Ramanam et al (CVPR'12).
 - Employs a mixture of trees model with shape model.
 - Ability to handle non-frontal head pose: critical for faces in AFEW.

Face Extraction and Alignment

- Fiducial-point Tracker:
 - Based on supervised gradient descent by Torre et al. (CVPR'13).
 - Returns 49 fiducial-points.
- Output from detector is fed to tracker.
- Re-initialization using detector if the tracker fails.
- Faces aligned with a reference face using affine transform.

Multimodal Features

- 3 feature modalities:
- Facial features like BoW, HOG.
- Sound features.
- Scene or context features like GIST.

- 1. Bag of Words (BoW):
 - State-of-art pipeline for static expression recognition by Sikka et al. (ECCV'12).
 - Based on multi-scale dense SIFT features (4 scales).
 - Encoding using LLC*.
 - Spatial information encoded using pooling over spatial pyramids.

- Video features obtained by max-pooling over frame BoW features. (Sikka et al., AFGR'13).
- Robust compared to Gabor and LBP.
- Included multiple BoW features- constructed using different dictionary sizes (200, 400, 600).
- Motivated by recent success in multiple dictionary classification*.

- 2. LPQ-TOP*
 - Local Phase Quantization over Three Orthogonal Planes.
 - Texture descriptor for videos.
 - Robust variant of LBP-TOP.
 - Three set of features extracted with different window sizes of 5, 7 and 9.

- 3. HOG
 - Histogram of gradient features.
 - Describe shape information of objects using distribution of local image gradients.
 - Used for object detection and static facial expression analysis.
- 4. PHOG
 - Variant of HOG based on pyramids.
- Video features obtained by max-pooling over frame features.

Sound features

- Audio features improve performance of expression recognition systems (AVEC challenge).
- Employed paralinguistic descriptors from audio channel

– Ex: MFCCs, fundamental frequency

- Summarized using functionals like max, min etc.
- 38 low-level descriptors + 21 functionals.
- Features provided by organizers.

Scene or Context features

- Investigated if scene information is relevant to recognition on AFEW.
- Two sets of features:
 - 1. BoW features extracted over entire image instead of just faces.
 - 2. GIST features (Oliva et al.)
 - 1. Output of bank of multi-scale oriented filters + PCA.
 - 2. Popular to summarize scene context.

Feature Fusion

- Multiple features encode complementary information discriminative for a task.
- Combining features -> improves classification accuracy.
- Techniques for fusing features:
 - 1. Feature concatenation.
 - 2. Decision (classifier) level fusion.
 - 3. Multiple Kernel Learning (MKL) strategy.
- MKL is more principled since it can be coupled with classifier learning, e.g. with a SVM.

Multiple Kernel Learning

- Used Multi-label MKL (Jain et al., NIPS'10).
- Estimates optimal convex combination of multiple kernels for training SVM.
 - Formulates MKL as a convex optimization problem.
 - Globally optimal solution.
- Unique kernel weights are learned for each class.

Our Approach

- Our approach fused different features using MKL.
- Referred to as **All-features + MKL** in results.
- RBF kernels used as base kernels for all features.
- Employed one-vs-all multi-class classification strategy instead of one-vs-one in SVM.
 - More training data per classifier.
 - Showed improvement in results.
 - Class assignment based on maximum probability across the per-class classifiers.

Experiments

- Kernel and SVM hyper-parameters obtained by cross-validation on validation set.
- Performance metric is classification accuracy on the 7 classes.

Results Validation Set

Features	Accuracy
Baseline video (LBPTOP)	27.27%
Baseline sound	19.95%
Baseline video + sound	22.22%

• Baseline-performance on validation set.

Results Validation Set

Features	Accuracy
Baseline video (LBPTOP)	27.27%
BoW-600	33.16%

- BoW shows an advantage of 5% compared to LBPTOP used for baseline.
- Performance boost attributed to both (1) better face alignment + (2) more discriminative BoW features.

Results Validation Set

Features	Accuracy
Baseline video (LBPTOP)	27.27%
Baseline sound	19.95%
Baseline video + sound	22.22%
(Feature concatenation)	
BoW-600	33.16%
BoW-600 + Sound (MKL)	34.99%

- Fusion method 'feature concatenation' leads to fall in performance for baseline features.
- However, performance rises for feature fusion using MKL.
- Highlights advantage of MKL.

Final Results

Validation Set		
Method	Accuracy	
Baseline video (LBPTOP)	27.27%	
BoW-600 + Sound + MKL	34.99%	
All features + MKL	37.08%	

Test Set		
Method	Accuracy	
Baseline video (LBPTOP) + audio	27.56%	
All features + MKL	35.89%	

- Best accuracies are reported for baseline approaches.
- All-features + MKL is the **proposed approach**.
- Using **multiple features** gives significant improvement over just BoW-600 and sound features.

Kernel Weights

Visual features
Sound features
Context features

Kernel Name	Mean Weight (Std)
HOG-4	.5008 (.1167)
BoW-200	.2024 (.0614)
BoW-400	.1186 (.0544)
BoW-600	.1112 (.0230)
LPQTOP-5	.0252 $(.0212)$
Sound	.0184 (.0088)
HOG-8	.0177 (.0061)
LPQTOP-9	.0028 (.0029)
LPQTOP-7	.0008 (.0009)
BoW-FullScene	.0006 (.0010)
PHOG-4	4.4e-05 (.0001)

• Mean and standard deviation are calculated across kernel weights learned for each class.

Kernel Weights

- Visual features are more discriminative compared to sound features.
- Highest weights are assigned to HOG and BoW kernels.
- Context based features:
 - BoW over entire scene (including faces) weight of .0006.
 - Information from this BoW kernel could come from both face and scene information.
 - GIST features not included in final features because they did not improve performance.
 - Scene information might not be discriminative.

Insights

- MKL works better than naïve feature fusion using feature concatenation.
- MKL allows separate γ for each RBF feature kernel leading to better discriminability.
- Fusion of visual and sounds features leads to improvement in results (multimodality).
- Found improvements in result using one-vs-all multi-class strategy.

Conclusion

- Proposed an approach for recognizing emotions in unconstrained settings.
- Our method of **combining multiple features using MKL** shows significant improvement over baseline on both test and validation set.
- Highlighted advantage of using both (1) multiple features, and (2) MKL for feature fusion.
- Investigated learned kernel weights to show the contribution of different kernels.

Thanks

• Pl. forward any questions to <u>ksikka@ucsd.edu</u>

• Thanks to our Presenter Yale Song, Graduate Student, Multimodal Understanding Group, MIT.